
Integration Services Technical Overview Page 1 of 25

Integration Services

Technical Overview

Copyright © 2005-2009 by the State of Minnesota

State Court Administrator’s Office
 All Rights Reserved

Court Integration Services

Integration Services Technical Overview Page 2 of 25

Table of Contents

1. DOCUMENT REVISION HISTORY ... 4

2. PREFACE .. 4

3. MESSAGING ... 4

3.1. Message Exchange Patterns ... 4
3.1.1. Request/Reply ... 4

3.1.2. Submission/Response ... 4

3.1.3. Publish/Subscribe .. 5

3.2. Message Format .. 5

3.3. Message Transport.. 5

4. MESSAGE FORMAT ... 5

4.1. XML Prefixes and Namespaces ... 5

4.2. SOAP Envelope ... 6

4.3. SOAP Headers ... 7
4.3.1. Addresses .. 8

4.3.1.1. Websphere MQSeries Addresses .. 8

4.3.1.2. Web Service Addresses ... 9

4.3.2. Headers of Type Endpoint Reference ... 9

4.3.3. Headers of Type Security/UsernameToken .. 10

4.4. SOAP Body .. 11
4.4.1. CourtXML Versioning .. 11

4.4.2. SOAP Faults.. 11

5. USING INTEGRATION SERVICES ... 14

5.1. Choosing an Environment .. 14

5.2. Sending Messages (Request and Submission) .. 14
5.2.1. IBM Websphere MQ Series .. 14

5.2.2. Web Services .. 15

5.3. Receiving Messages ... 16
5.3.1. IBM Websphere MQ Series .. 16

5.3.1.1. Reply and Response Messages ... 16

5.3.1.1. Notification Messages ... 16

Integration Services Technical Overview Page 3 of 25

5.3.2. Web Services .. 17

5.3.2.1. Reply Messages .. 17

5.3.2.2. Response Messages ... 17

5.3.2.3. Notification Messages ... 17

5.3.2.4. Receiving Pushed Messages ... 17

5.3.2.5. Pulling Messages .. 18

5.3.2.5.1. PullRequest ... 19

5.3.2.5.2. PullReply... 19

5.3.2.5.3. ReleaseRequest ... 19

5.3.2.5.1. ReleaseReply... 20

6. SECURITY ... 20

APPENDIX A: ERRORS ... 21

APPENDIX B: EXAMPLE SOAP FAULT ERRORS ... 22

Examples with Invalid Code Values .. 22

Example with Missing Required Element .. 25

Integration Services Technical Overview Page 4 of 25

1. Document Revision History

Date Author Revision Highlights

10/28/2005 T. Buchholz Created.

4/10/2006 T. Buchholz Added SOAP actor.

9/11/2006 T. Buchholz Migrated to SOAP version 1.2

4/25/2007 T. Buchholz Added information regarding HTTPS transport.

7/12/2007 R. Gosewisch Updated format.

2/11/2008 T. Buchholz Add more information on Web Services access to Integration
Services.

6/11/2008 R. Gosewisch Added Appendix B to provide some examples of SOAP
validation errors when there are invalid code values or
missing elements in a message.

6/9/2009 T. Buchholz Removed Soap Actor.

2. Preface
This document gives a technical overview of the Integration Services provided by the Minnesota
Supreme Court. From now on these services will be referred to as “Integration Services” in this
document. It provides general details about how Integration Services work, and how to access
them.

3. Messaging

3.1. Message Exchange Patterns

The Integration Services are implemented as sets of message exchanges. These exchanges all
are based on one of the following 3 patterns.

3.1.1. Request/Reply

A request message is sent to the service and a reply message is returned to an
address specified in the request message. Services that provide query access are
developed using this pattern.

3.1.2. Submission/Response

A submission message is sent to the service. This submission may result in one or
more response messages being returned to an address specified in the submission
message. This category is used most often by services that are used to make
updates to one of the Courts systems (EFile Submission). The purpose for response
messages is usually to inform the submitter of the processing state of one of their
submissions (Accepted, Rejected or Pending). Response messages can either be
pushed or pulled (see section 5.3).

Integration Services Technical Overview Page 5 of 25

3.1.3. Publish/Subscribe

A message (referred to as a Notification message) is published by a service.
Consumers that have previously subscribed to that message will have it sent to an
address specified when their subscription was created. This category is most often
used to publish business events to interested consumers. Response messages can
either be pushed or pulled (see section 5.3).

3.2. Message Format

Messages are encoded using utf-8. These messages primarily consist of ASCII text characters,
but may include non-ASCII characters if the source system supports them.

Unless otherwise noted, messages transmitted to and from the Courts Integration Services are
formatted as SOAP messages. The body of each message is defined by a CourtXML message
schema. See section 4 for more details on how SOAP messages are formatted. See the
documentation for the specific service you are using for information on the structure of the
body of the message.

Note: depending on the toolset that you are using you may not need to even be aware that
SOAP is being used. Your development tool may take care of building all of the soap elements
and headers for you.

3.3. Message Transport

Integration Services are supported over multiple communications transports. These include

 Web Services

 IBM Websphere MQSeries (both Server and Client). Note: many software tools (such as
Oracle and BizTalk) provide gateways to MQ Series and can use the MQ Series client to
communicate with Queues in a MQ Series server environment.

See section 5 for more details on how to use each of the transports.

All messages are required to be transmitted over secure communication channels. This is done
using SSL (HTTPS or MQSeries Channels using SSL). See the document Integration Setup
Procedures for more information on setting up each transport.

4. Message Format

4.1. XML Prefixes and Namespaces

The following table lists the prefixes and xml namespaces that are used by integration services
and are referenced throughout this document.

Prefix XML Namespace Specification(s) Link/Description

Integration Services Technical Overview Page 6 of 25

Prefix XML Namespace Specification(s) Link/Description
soap* http://schemas.xmlsoap.org/soap/e

nvelope/
SOAP 1.1 http://www.w3.org/TR/2000/NOTE-

SOAP-20000508/

soap* http://www.w3.org/2003/05/soap-
envelope

SOAP 1.2 http://www.w3.org/TR/2003/REC-
soap12-part1-20030624/

Wsse http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-
1.0.xsd

WS-Security http://schemas.xmlsoap.org/specs/ws-
security/ws-security.htm

Wsa http://schemas.xmlsoap.org/ws/20
04/08/addressing

WS-Addressing http://www.w3.org/TR/ws-addr-core/

Wse http://schemas.xmlsoap.org/ws/20
04/08/eventing

WS-Eventing http://www.w3.org/Submission/WS-
Eventing/

 http://www.courts.state.mn.us/Cou
rtXML/X.X.X

(X.X.X corresponds to the version
level)

CourtXML http://www.mncourts.gov/?page=1368

Is http://www.courts.state.mn.us/IS Integration
Services

Used as a namespace for fault codes
specific to Courts Integration Services

Xs http://www.w3.org/2001/XMLSche
ma

XML Schema http://www.w3.org/XML/Schema

* Services that fall under the Request/Reply and Submit/Response patterns support both SOAP
1.1 and SOAP 1.2. Reply and Response messages will use the same version of SOAP as their
corresponding Request and Submission messages. Messages using the Publish/Subscribe
pattern are sent using SOAP version 1.2.

4.2. SOAP Envelope

The root element of a SOAP message (either version 1.1 or 1.2) is the Envelope. The Envelope
element contains a header section and a body section. The header section is used to hold
message extensions (also referred to as message headers). Message headers contain
information that controls how messages are processed. The body section is used for
application-specific data and is considered the payload of the message. This is where the
information that is the actual purpose for sending the message resides.

Figure 1: SOAP Message Structure

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://schemas.xmlsoap.org/specs/ws-security/ws-security.htm
http://schemas.xmlsoap.org/specs/ws-security/ws-security.htm
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://www.w3.org/TR/ws-addr-core/
http://schemas.xmlsoap.org/ws/2004/08/eventing
http://schemas.xmlsoap.org/ws/2004/08/eventing
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/WS-Eventing/
http://www.courts.state.mn.us/CourtXML/X.X.X
http://www.courts.state.mn.us/CourtXML/X.X.X
http://www.mncourts.gov/?page=1368
http://www.courts.state.mn.us/IS
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/XML/Schema

Integration Services Technical Overview Page 7 of 25

<?xml version="1.0"?>
<soap:Envelope xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Header>
 ……
 </soap:Header>
 <soap:Body>
 ……
 </soap:Body>
</soap:Envelope>

Figure 2: SOAP Message Syntax

4.3. SOAP Headers

The header section of the SOAP envelop contains XML elements known as message headers.
These headers contain control information that is used to determine how to process the
message. The following is a list of the most common headers that may be included in
Integration Service messages. See their associated specifications (wse, wsse, wsa, …), and the
sample messages, for details on their structure.

Header Element Description Type

wsa:MessageID Contains a unique identifier for this given message. All
messages require this element with the exception of those
submitted to the Integration Service using IBM Websphere
MQSeries. If a message is received using IBM Websphere
MQSeries and it doesn’t have a wsa:MessageID header the
value of the MQ Series messages MessageID property will
be used.

xs:anyURI

wsa:RelatesTo Contains the unique identifier (wsa:MessageID) from
another message to which this message is somehow
related. This header is used in Reply and Response
messages to allow receivers to link up Reply messages with
Request messages and a Response messages with
Submission messages.

xs:anyURI

wsa:Action Contains a string that uniquely identifies the given message.
See the Integration Services Documentation for each service
for the specific values that will be included in Reply,
Response and Notification messages and that need to be
included in Request and Submission messages.

xs:anyURI

wsa:To Contains either an address to which the message is being
delivered. Request and Submission messages should
always contain the value
http://www.courts.state.mn.us/IS/02.

xs:anyURI

wsa:ReplyTo Contains an address to which reply and response messages
should be returned.

wsa:EndpointReference

http://schemas.xmlsoap.org/soap/envelope/
http://www.courts.state.mn.us/IS/02

Integration Services Technical Overview Page 8 of 25

Header Element Description Type

is:ResponseTo This header is used with e-File submission messages and
contains the address that the response message(s) should
be (asynchronously) delivered when using HTTP. This
header is unnecessary when using MQ Series. This is
necessary with HTTP because the wsa:ReplyTo header is
used for the synchronous reply that indicates we have
received the submission.

wsa:EndpointReference

is:HoldResponse This header is used with e-File submission messages and is
used to indicate that response messages should be held so
they can be pulled at a later time by the submitter.

HoldResponse

wsa:FaultTo Contains an address to which should be used to return fault
messages should be returned. This header is optional and
the ReplyTo header will be used in its absence.

wsa:EndpointReference

wsse:Security/
wsse:UsernameToken

Contains information that will allow the receiver of a
message to authenticate its sender. See the section called
‘Headers of Type Security/UsernameToken’ for more
information on this header. This header is required in all
Request and Submission (inbound to the court) messages
and can optionally be configured to be included in Reply,
Response and Notification messages (outbound from the
court).

UsernameToken

wse:Identifier Included in Notification messages (Publish/Subscribe). It
contains an identifier that corresponds to the subscription
that is being served by the delivery of a notification
message. This identifier was assigned to the subscription
when it was initially created.

xs:anyURI

wse:Expires Included in Notification messages (Publish/Subscribe). If
the subscription that is being serviced by this notification
message is set to expire, this header will contain the
expiration date. There are 2 reasons that a subscription
could be set to expire:

 It is for a version of CourtXML that is not current
and an expiration date for that version has been
set.

 An expiration date was specified when the
subscription was created.

When this date passes no more notification messages will
be delivered based on this subscription. This is a
mechanism to alert the consumer that their subscription is
about to end.

DateTime

4.3.1. Addresses

Addresses are used in messaging headers to identify endpoints to which messages
should be routed. Integration Services are accessible via multiple transport
mechanisms, each with a different format for how addresses are represented.

4.3.1.1. Websphere MQSeries Addresses

When using Websphere MQSeries as the transport, the addresses are formatted as
follows:

Integration Services Technical Overview Page 9 of 25

 wmq:QUEUENAME@QUEUEMANAGER
The first 4 characters are always ‘wmq:’. The rest of the address is made up of 2
components separated by an “@” character. The first component is a queue name.
The second component is the queue manager on which the queue resides.

<wsa:Address>wmq:MYQUEUE@MYQUEUEMANAGER</wsa:Address>

Figure 3: Sample wsa:Address element formatted for Websphere MQSeries

4.3.1.2. Web Service Addresses

Accessing Integration Services through Web Services uses HTTPS as the transport.
HTTPS addresses are formatted as follows:
 https:webaddress
The first 6 characters are always ‘https:’ followed by the rest of the characters that
make up the web address.

<wsa:Address>https://myaddress.asmx</wsa:Address>

Figure 4: Sample wsa:Address header for HTTPS

4.3.2. Headers of Type Endpoint Reference

ReplyTo and FaultTo headers are of type Endpoint Reference and are used to specify the
endpoint that should be used for reply and response messages. They will consist of a
root element (named either wsa:ReplyTo or wsa:FaultTo) and the following child
elements:

wsa:Address: Required, contains an address (see the section called ‘Headers of Type
Address’).

wsa:ReferenceProperties: Optional, contains XML elements that the
requestor/submitter wants returned as headers in reply/response messages.

<wsa:ReplyTo>
 <wsa:Address>wmq:MYQUEUE@MYQUEUEMANAGER</wsa:Address>
 <wsa:ReferenceProperties>
 <mypfx:MyElement1 xmlns:mypfx=”mynamespace”>MYDATA </mypfx:MyElement1>
 <mypfx:MyElement2 xmlns:mypfx=”mynamespace”>THEDATA</mypfx:MyElement2>
 </wsa:ReferenceProperties>
</wsa:ReplyTo>

Figure 5: Sample wsa:ReplyTo header

Integration Services Technical Overview Page 10 of 25

4.3.3. Headers of Type Security/UsernameToken

Headers of type Security/UsernameToken are used by the Integration Service to identify
and authenticate the system that is consuming the Integration Service. They contain a
Username element and a Password element.

For messages that are sent as input to Integration Services the Username and Password
values will have been assigned to you at the time your configuration was setup as a
consumer of Integration Services. If you need to access multiple environments
separate accounts will be configured for Production, Development and QA. The
passwords for Dev and QA will usually be the same while the password for Production
will be different. The Username is not specific to a certain user of your system, but is
one value that corresponds to all users of your system when accessing Integration
Services. Integration services use these values to determine what rights the sender has
and to confirm that they have access to the particular service.

For messages output from Integration Services the values for Username and Password
will be those that you specified when you requested access to integration services. The
same values will be used no matter which Integration Service is sending you a message.
You can use these values to confirm that the messages received come from a trusted
source.

<wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>MyUsername </ wsse:Username>
 <wsse:Password>MyPassword</ wsse:Password>
 </wsse:UsernameToken >
</ wsse:Security>

Figure 6: Sample wsse:Security/wsse:UsernameToken header

When using HTTP transport the components that you use to produce the
UsernameToken elements will include many other elements and attributes that are not
shown here.

At this time passwords are passed as plain text. This is one of the reasons that we
require that all communication channels are set up using SSL encryption.

4.3.4. Headers of type HoldResponse

Headers of type HoldResponse are used within e-File submission messages to indicate

that any resulting response messages should be held so they can be pulled at a later time

by the submitter. It contains one child element named RetrievalCode This element is

used to specify a value that is used to identify the message(s) that are being pulled. See

section 5.3.2.5.

Integration Services Technical Overview Page 11 of 25

4.4. SOAP Body

The body of the SOAP envelope is where the actual payload of the message will be
contained. The content is in XML format and its elements and structure are defined by
the CourtXML message schema for the service that is being accessed. See the
Integration Services Documentation, and message schema for each service for a
description of the message body for that service.

4.4.1. CourtXML Versioning

Each service will have its own schema which is based on the base CourtXML schema.
These schemas will be versioned using the CourtXML namespace version concatenated
to the schema version. For example: the first CaseGet schema developed using
CourtXML version 3 will be named CaseGet_3_1.xsd. If we need to produce a second
version of the CaseGet schema, while still using the version 3 CourtXML base schema, it
would be named CaseGet_3_2.xsd.

The version of the CourtXML schema to which the body of a given message corresponds
will be shown by the value of the schemaVersion attribute of the root element (first
child of the soap:Body element). An example is:
 <MessageRootElement schemaVersion=”3:1”>
This version indicates that the associated message is at version 3 of CourtXML and
version 1 of the specific message.
To support version migrations, Integration Services will support multiple versions at the
same time. So, for instance, if version 3:2 of the CaseGet schema is published, then
existing messages will continue to be serviced at the 3:1 version for a specified period of
time. This will allow multiple partners to migrate to the new version of CourtXML as
they are able, rather than be required to all migrate simultaneously. We plan to keep
old versions of schemas available for at least 6 months after a new version is published
in production.

Eventually old versions will expire and will no longer be supported. When this happens,
any messages that are at that version will be rejected.

4.4.2. SOAP Faults

If some kind of error has occurred as a result of a request or submission message, the
response and reply message bodies could consist of a SOAP fault. A common reason for
receiving a SOAP fault is that the body of the corresponding request or submission
message did not conform to an active version of the associated schema. Another is that
the sender doesn’t have the required access rights to use that service.

Integration Services Technical Overview Page 12 of 25

<soap:Fault>
 <soap:Code>
 <soap:Value>soap:Sender</soap:Value>
 <soap:Subcode>
 <soap:Value>soap:InvalidMessage</soap:Value>
 </soap:Subcode>
 </soap:Code>
 <soap:Reason>
 <soap:Text xml:lang="en">Message does not conform to schema.</soap:Text>
 </soap:Reason>
 <soap:Node>soap:Body</soap:Node>
 <soap:Role>http://www.w3.org/2003/05/soap-
envelope/role/ultimateReceiver</soap:Role>
 <soap:Detail>
 <is:DetailString>The element 'CaseGetRequest' in namespace
'http://www.courts.state.mn.us/CourtXML/2.0.0' has invalid child element 'Selectionx' in
namespace 'http://www.courts.state.mn.us/CourtXML/2.0.0'. List of possible elements expected:
'Selection' in namespace 'http://www.courts.state.mn.us/CourtXML/2.0.0'.</is:DetailString>
 </soap:Detail>
</soap:Fault>

Figure 7: Sample soap:Fault

Integration Services Technical Overview Page 13 of 25

The following elements make up a soap 1.2 fault:

Element Description

soap:Code/
 soap:Value

Code that shows where the error originated.
Possible Values are: soap:Sender and soap:Receiver.

The value soap:Sender indicates that the message had some
problem with it prior to transmission and will have to be fixed
prior to transmitting it again. It would not be appropriate to
just retransmit the same message after receiving a
soap:Sender fault.

The value soap:Receiver indicates that a problem occurred
after receiving the message and that the problem was not with
the message itself. Retransmitting a message after a
soap:Receiver message has been received may be successful.

soap:Code/
 soap:Subcode/
 soap:Value

Code that further describes the reason for the fault.

soap:Reason/
 soap:Text

Textual description for the fault.

soap:Node The node within the message from which the error resulted.

soap:Role URI indicating the role of the process that is returning the soap
fault.

soap:Detail Element containing some additional information that should
help with resolving the fault.

The wsa:Action element for messages that contain SOAP faults will be the following:
http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Integration Services Technical Overview Page 14 of 25

5. Using Integration Services

5.1. Choosing an Environment

Integration Services are accessible in 3 different environments (Development, QA/Test
and Production) . The service page for each service will provide you with the endpoint,
or addressing information, for that service for each environment. The Development
and QA/Test environments can be used as a part of your development and testing
process. They are generally used for the following purposes, though depending on what
services you are using, and maintenance schedules for those environments, you may be
asked to use one or the other:

 Development: Development and testing using newly created integration
services. These are services that we may be currently developing, or that are
finished though haven’t been migrated to production.

 QA/Test: Development and testing using existing services. This environment is
usually at the same level as production and should be more stable than
Development since code that it is running has been through the full testing cycle
that is required for migration to production.

5.2. Sending Messages (Request and Submission)

Request and Submission messages need to be formatted as SOAP envelopes with all of
the appropriate SOAP Headers. See section 4 for information on how to format the
envelope and headers. For the wsa:Action header use the value that is specified in the
service documentation for the particular service’s request or submission message.

The body of the message is formatted according to the CourtXML message schema for
the particular service that is being used.

The format for the message is the same regardless of the transport, but the methods
you use to send them will vary depending on the transport chosen.

5.2.1. IBM Websphere MQ Series

When sending messages using IBM Websphere MQ Series your application will be
responsible for formatting the message, including the soap envelope, headers and body
as defined by the services message schema, and then placing that message on the
Queue and Queue Manager specified as the MQ Series endpoint for the environment in
which you are working. If you are using the MQ Series Client software you will be
placing the message directly on that queue. If you have MQ Series Server installed you
may be placing your message on a Remote Queue Definition that is linked to that input
queue, or directly on that queue by referencing the specified queue manager as the
“Remote” queue manager.

Integration Services Technical Overview Page 15 of 25

Within the message you will need to include a wsa:ReplyTo header that specifies the
queue to which the reply message should be returned. If you are using the MQ Series
Client we will have provided a queue for you to use for this purpose. If you are using
MQ Series Server you will specify your queue manager and queue name. See section
4.3.2 for information on how to format this header.

See the document labeled “Integration Setup Procedures” for information on how to set
up connections to Integration Services using MQ Series and MQ Series Clients.

5.2.2. Web Services

Web Services provide a way to send Request and Submission messages to the Court
Integration Services using HTTP. Court Integration Services can be accessed through 1
of 2 different web service endpoints. The only difference between them is with the
WSDL that is presented by the service.

 SOAP Service Endpoint: WSDL does not specifically define the body of the
message other than that it has to be formatted as XML.

 XML Web Service Endpoint: WSDL includes the appropriate CourtXML schema
elements for the particular service you are using.

Messages are formatted the same regardless of which endpoint is used. The primary
difference is with what your development tools may do for you based on what is in the
WSDL document.

Messages can be sent to the web services in a variety of ways. They include:

 Referencing the SOAP Service
o Create a web reference to the SOAP Service endpoint.
o You should not have to do anything with creating soap envelopes or soap

headers (other than adding the wsse:Security header).
o Manually create the body of the message based on the CourtXML

message schema.
o Send the body of the message to the service by calling a method of the

service, passing the body as a parameter.

 Referencing the XML Web Service
o Create a web reference to the XML Web Service endpoint.
o You should not have to do anything with creating soap envelopes or soap

headers (other than adding the wsse:Security header).
o Make use of the set of classes generated from the WSDL to create the

request or submission object.
o Call a method of the service to send the request or submission to the

service passing the object as a parameter.

 Use an HTTP Post to send the message
o Manually create the full soap envelope, including all headers (as

described in section 4) and the body as defined by the services CourtXML
message schema.

Integration Services Technical Overview Page 16 of 25

o Send the message to either the SOAP Service or XML Web Service
endpoints using a HTTP Post and with the following HTTP headers set:

 SOAPAction: the same value as in the wsa:Action header of the
message.

 Content-Type: text/xml;charset=utf-8

5.3. Receiving Messages

Messages received will be formatted as SOAP envelopes with all of the appropriate
headers. See section 4 for information on how the SOAP envelope and headers will be
formatted.

The body of the message will be formatted according to the CourtXML message schema
for the particular service that is being used.

The format for the message is the same regardless of the transport, but the methods
you use to receive them will vary depending on the transport chosen.

5.3.1. IBM Websphere MQ Series

All messages published to MQ Series queues will be written using code page 1208 to
support utf-8 encoding of data.

5.3.1.1. Reply and Response Messages

Reply and Response messages will be sent to the Queue and Queue Manager that were
specified in their corresponding request and submission message’s wsa:ReplyTo header.
If a reply or response is a SOAP fault then the values provided in the wsa:FaultTo header
will be used if provided. Reply and Response messages can be correlated with their
associated Request and submission messages in the following ways:

 The reply or response MQ Series message’s CorrelationID property will be
the same as the MessageID property of the request or submission message.

 The wsa:RelatesTo SOAP header of the reply or response message will be the
same as the wsa:MessageID SOAP header of the request or submission
message.

 Any elements included in the request or submission messages
(wsa:ReplyTo|wsa:FaultTo)/wsa:ReferenceProperties element will be
returned as headers in the reply or response message (see section 4.3.2).

5.3.1.1. Notification Messages

Notification messages will be sent to the Queue and Queue Manager that were
specified when the subscription was initially created. Notification messages will contain
a header wse:Identifier that will contain the identifier for the subscription for which the
notification is being sent. If a subscription has an expiration date set its notification
messages will also contain a header wse:Expires which will contain the date and time
that that subscription will stop receiving messages.

Integration Services Technical Overview Page 17 of 25

5.3.2. Web Services

5.3.2.1. Reply Messages

Reply messages, unless otherwise specified, are returned synchronously as the return
value from the method call that submitted the request. Nothing additional needs to be
done to receive these reply messages. If the specific Request/Reply service that you are
using provides an asynchronous option the reply messages will be treated the same as
response messages.

5.3.2.2. Response Messages

For response messages, when the initial submission message is sent there will be a
synchronous response (return from the submission method call) that indicates whether
the message was received or not. If the message could not be received for any reason
that response will be a SOAP fault. All other response messages that are sent as a
result of a submission will be returned asynchronously (at a later time). These
asynchronous response messages can either be pushed to a web service whose URL was
specified in the submission messages is:ResponseTo header, or pulled. See the specific
documentation for the service you are using for how to specify which method (push or
pull) you want to use for receiving these responses. See sections 5.3.2.4 and 5.3.2.5 for
information on how to receive pushed and pulled messages.

5.3.2.3. Notification Messages

Notification messages, when triggered, can either be pushed to a web service who’s URL
was configured on the associated subscription at the time that the subscription was
created, or pulled. See the specific documentation for the service you are using for how
to specify which method (push or pull) you want to use for receiving these messages.
See sections 5.3.2.4 and 5.3.2.5 for information on how to receive pushed and pulled
messages.

5.3.2.4. Receiving Pushed Messages

Pushed messages are sent to an endpoint specified by the consumer (either via the
is:ResponseTo header of corresponding request and submission messages, or via the
configuration of the notification subscription) at the time the messages are produced.

To receive Pushed messages through web services you will need to provide a message
receiver web service. That service will need to have the following characteristics:

 Be accessible via HTTPS (using SSL for data encryption while being transmitted).

 Include a method that will be used to receive the message that has the following
characteristics:

o Have its assigned SOAP action equal to the message’s Push SOAP Action
as identified in the specific service’s documentation for that message.

o It must have a binding of “document” and a use of “literal”.

Integration Services Technical Overview Page 18 of 25

o It must have both input and output, and return a fault if the message
could not be received. For successfully received messages it doesn’t
matter what the output is as long as it is not a fault. The output for a
successfully received message could be an empty soap envelope, or a
value that indicates that the message was received.

o It is recommended that this method do nothing more than store the
message at a location where it can be processed at a later time.

 If the service that is pushing messages could include SOAP fault messages then
the receiver web service must also include a method to receive those faults.
That method should have the same characteristics as defined in the previous
bullet and be associated with the SOAP Fault action
(http://schemas.xmlsoap.org/ws/2004/08/addressing/fault).

5.3.2.5. Pulling Messages

Pulled messages are held by the Court Integration Broker at the time that they are
produced so that they can be pulled by the consumer at a later time. They are
requested to be held by including specific headers in Request and Submission messages
or via the configuration of the notification subscription. Pulling messages is appropriate
for smaller offices where a web server, web service and digital certificates required to
receive messages may not be available, and where volumes are low and some additional
latency is not an issue.

To receive Pulled message there are 2 additional Request and Reply messages that are
used. Each service that supports Pulled messages will provide both a Pull request and
reply and a Release request and reply in the services message schema. See the
associated schema for the message formats and the associated service documentation
for the SOAP Actions that are associated with the Pull and Release requests.

For each message that was held by the courts integration broker for the consumer, the
consumer will need to do a pull request to get the message. Once the message has
been pulled and processed successfully they will need to do a Release request to inform
the Court Integration Broker that it can dispose of that message. Note: subsequent
Pulls without doing a Release will always result in the same message being pulled. This
is done to assure that messages are not lost if system problems occur. The following
algorithm can be used to pull messages:

1. Submit a Pull request
2. If a message is returned in the reply:

a. Process that message
b. Submit a Release request to dispose of that message
c. If the reply from the pull request indicates that there are more messages

to be pulled repeat starting at step 1.
If an error occurs while processing the message and a release is not done, the next time
the pull request is initiated that message will be returned again.

Integration Services Technical Overview Page 19 of 25

It is recommended that consumers perform pull requests for messages at a minimum of
1 time each day, and a maximum of every hour.

The following describe each of the Pull/Release messages:

5.3.2.5.1. PullRequest

This message is used to initiate the pull of a held message and to specify the selection
criteria for the message that is to be pulled. The selection criteria consists of a code
value named RetrievalCode. This value has to match the value that was included in the
associated Submission message, or that is configured on the notification subscription.
The value for RetrievalCode that is chosen is completely up to the consumer and
depends on how the consumer wants to pull messages. Some examples of how it can
be used are:

 Use the same value for all messages of the type that is being pulled (this is how it
works for Notification messages).

 Use a different value for each message.

 Use the same value for each message for a given department.

5.3.2.5.2. PullReply

This message is the reply to a PullRequest. It will include the following information:

 The RetrievalCode that was used in the request.

 The number of held messages that had the same RetrievalCode that are still
available to be pulled (not including the current message).

 If a message was found that matched the RetrievalCode it will also include the
following:
o An identifier for the pulled message (MessageID) to be used later in the

ReleaseRequest.
o A count of how many times this message has been pulled

(MessagePulledCount). This value usually will be 1 though may be greater
than 1 if errors have occurred during prior pulls which caused it not to be
released.

o An element containing the message that is being pulled. See the service
documentation and schema for the format for this element. If the service
that you are using could publish faults then this element could also be a
SOAP fault.

 Any additional soap headers that are specified to be included with the message
that is being pulled will be included as headers in the PullReply. Some examples
of this are EFileID and SubmittingAgencyORI of EFile response messages, and the
wse:Expires and wse:Identifier headers of notification messages.

5.3.2.5.3. ReleaseRequest

This message is used to inform the Court Integration Broker that a specific held message
can be disposed of so that the next pull request will retrieve the next message. It

Integration Services Technical Overview Page 20 of 25

includes the MessageID value that was retrieved in a prior PullReply message that
identifies the message that can be disposed.

5.3.2.5.1. ReleaseReply

This message is used to inform the consumer that a message has been successfully
released. It includes the MessageID value that was included in the ReleaseRequest, and
an indicator that the release was successful.

6. Security
Integration Services use secure communication channels to protect messages as they
are being transmitted between servers.

Each message that is either input to or output from an Integration Service contains
credentials that identify the submitting system. At the time that you are registered for
access to Integration Services you will be provided with the credentials that you will
need to send along with messages that are input to Integration Services (Requests and
Submissions), and will be able to specify the credentials that you want returned to you
in Reply, Response and Notification messages. Currently these credentials are in the
form of a user name and password. See the section called ‘Headers of Type
Security/UsernameToken’ for a description of the format for these credentials.

For input messages, Integration Services use these credentials to determine the rights to
attribute to the sender. These rights include at a minimum the permission to access the
particular service. They may also include others, such as permissions to certain court
locations, lines of business or confidential access.

Integration Services Technical Overview Page 21 of 25

Appendix A: Errors
The following table lists the soap faults that are common to integration services. See
the document for the specific integration service that you are using for additional faults
and errors that may be specific to that service.

Type Error Code Error Text Description/Resolution

1 SOAP
Fault

wsse:InvalidSecurityToken An invalid security token was
provided.

Confirm that the Username and
Password that you specified are
valid.

2 SOAP
Fault

wsse:MissingSecurityToken Missing Security Token. Include a wsse:Security header
with your assigned Username and
Password.

3 SOAP
Fault

wsse:UnauthorizedAccess Consumer does not have
authorization to use service.

Confirm that your Username was
assigned the required rights.

4 SOAP
Fault

soap:VersionMismatch Cannot Determine Version
Level.

Confirm that the message has the
proper schemaVersion and xml
namespace.

5 SOAP
Fault

soap:VersionMismatch An Unsupported CourtXML
Namespace was provided.

Check on which versions of the
message you are submitting are
still active.

6 SOAP
Fault

is:NotWellFormed The Input Document is not
well formed XML.

Check the formatting of your
message. Confirm that it is well-
formed XML.

7 SOAP
Fault

soap:InvalidMessage Message does not conform to
schema.

Refer to Appendix B for some
examples.

Check the formatting of your
message. Confirm that it matches
the definition in the schema.

8 SOAP
Fault

is:SystemError Some error message
describing the technical error
that has occurred.

Some technical system problem is
preventing the processing of the
message. Report this problem to
the Courts integration support.

Integration Services Technical Overview Page 22 of 25

Appendix B: Example SOAP Fault Errors
Messages that contain invalid code values are returned to the submitter as SOAP faults.
These ‘enumeration-type’ errors indicate that something about a codified element value
in the message is invalid. Either the code itself is not valid according to the enumeration
in the corresponding CourtXML message schema, or, the use of the code in the context
of the message is invalid according to the related simple type companion file.

Examples 1 and 2 below are examples of errors that indicate a problem with a value
supplied in the message.

Schema validation errors are detected and formatted by the XML parser component of
the .NET framework.

Examples with Invalid Code Values

Example 1:

- <soap:Fault>

- <soap:Code>
 <soap:Value>soap:Sender</soap:Value>

- <soap:Subcode>
 <soap:Value>soap:InvalidMessage</soap:Value>
</soap:Subcode>
</soap:Code>
- <soap:Reason>

 <soap:Text xml:lang="en">The

'http://www.courts.state.mn.us/CourtXML/3:ID' element is invalid - The
value '5000' is invalid according to its datatype

'http://www.courts.state.mn.us/CourtXML/3:StatutoryChargingOffenseTyp
e' - The Enumeration constraint failed. LineNumber = 225, LinePosition =

21</soap:Text>
</soap:Reason>
 <soap:Node>soap:Body</soap:Node>
 <soap:Role>http://www.w3.org/2003/05/soap-

envelope/role/ultimateReceiver</soap:Role>
- <soap:Detail>

- <soap:Envelope xsi:schemaLocation="http://www.w3.org/2003/05/soap-

envelope http://www.w3.org/2003/05/soap-envelope">

1. ‘The enumeration constraint has failed’ indicates a schema validation error. The
message failed because it included an invalid value for a codified element in the
message schema. In CourtXML schemas, elements that represent codified values in
MNCIS will have an enumeration, or list, of the values that are valid for that element.

2. This is the name of the element that contained the invalid value. In this example, the
name of the element is ID.

2

3 4

1 5

Integration Services Technical Overview Page 23 of 25

3. This is the value from the submission message that is invalid according to the
enumeration in the schema. In this example, the invalid value is 5000.

4. This is the CourtXML type for which the supplied value is invalid. In this example, the
type is StatutoryChargingOffenseType. The corresponding simple type companion file
from which the list of valid values is derived for the schema enumeration is called
StautoryChargingOffenseType.xml.

Note that the enumeration in the schema will contain obsolete values. An obsolete
value could be valid on an outbound notification from MNCIS, but it would not be valid
on a submission into MNCIS. The simple type companion file identifies codes that are
obsolete with an ‘obsoleteDate’ attribute.

5. This is the line number and position within the line, from the body of the submission
message that contains the invalid value. It is somewhat approximate because it could
vary slightly depending upon the tool that is being used to view the XML document. This
line number/position information only takes into account the body of the message – it
does not include any of the SOAP elements or headers.

Example 2:

This message passed ‘schema validation’, but failed on subsequent validation of the
Community of Offense code done by the Integration Broker.

- <soap:Fault>

- <soap:Code>
 <soap:Value>soap:Sender</soap:Value>

- <soap:Subcode>
 <soap:Value>soap:InvalidMessage</soap:Value>
</soap:Subcode>
</soap:Code>
- <soap:Reason>

 <soap:Text xml:lang="en">Unknown Enumeration value 'Stillwater' from

SimpleTypeCompanion File CommunityOfOffenseTextType for

court:MN027015J</soap:Text>
</soap:Reason>
 <soap:Node>soap:Body</soap:Node>

 <soap:Role>http://www.w3.org/2003/05/soap-

envelope/role/ultimateReceiver</soap:Role>
- <soap:Detail>

- <soap:Envelope xsi:schemaLocation="http://www.w3.org/2003/05/soap-

envelope http://www.w3.org/2003/05/soap-envelope">

1 2

3

4

Integration Services Technical Overview Page 24 of 25

1. ‘Unknown enumeration’ is again indicating a problem with the value in the message.
In this example, the code itself is valid and does appear in the enumerated list of values
for CommunityOfOffenseTextType. The problem is with the use of the code in
conjunction with some other data in the message.

2. This is the code value that is deemed to be invalid in the message. In this example,
the value is Stillwater.

3. This is the CourtXML type which has a value of ‘Stillwater’. The corresponding simple
type companion file is called CommunityOfOffenseTextType.xml.

4. The value ‘MN027015J’ provides the context for determining why a value of
‘Stillwater’ for the Community of Offense’ is invalid for this message.

MN027015J is the court jurisdiction ORI to which the example case initiation message is
being submitted. MN027015J represents Hennepin District Court. For a case being
initiated in Hennepin County, ‘Stillwater’ is not a valid value for Community of Offense.

By examining the simple type companion file noted above
(CommunityOfOffenseTextType.xml), it can be determined that ‘Stillwater’ is a valid
Community of Offense value for the following court ORIs only: MN082015J (Washington
Co District Court - Stillwater) and MN082025J (Washing Co District Court – Cottage
Grove). Listed below is the relevant entry from the simple type file:

- <EnumerationValue code="82STILLW">

 <Text>Stillwater</Text>

- <AssociatedValue type="InternalID">

 <Text>56052</Text>

 </AssociatedValue>

- <AssociatedValue type="ProsecutingAgencyORI">

 <Text>MN062025A</Text>

 </AssociatedValue>

- <AssociatedValue type="ProsecutingAgencyORI">

 <Text>MN082013A</Text>

 </AssociatedValue>

- <AssociatedValue type="ProsecutingAgencyORI">

 <Text>MN082011A</Text>

 </AssociatedValue>

- <AssociatedValue type="CourtJurisdictionORI">

 <Text>MN082025J</Text>

 </AssociatedValue>

- <AssociatedValue type="CourtJurisdictionORI">

 <Text>MN082015J</Text>

 </AssociatedValue>

 </EnumerationValue>

file://J00000swebint/MSCApps/Deve/Schemas/CourtXML/SimpleTypes/CommunityOfOffenseTextType.xml
file://J00000swebint/MSCApps/Deve/Schemas/CourtXML/SimpleTypes/CommunityOfOffenseTextType.xml
file://J00000swebint/MSCApps/Deve/Schemas/CourtXML/SimpleTypes/CommunityOfOffenseTextType.xml
file://J00000swebint/MSCApps/Deve/Schemas/CourtXML/SimpleTypes/CommunityOfOffenseTextType.xml
file://J00000swebint/MSCApps/Deve/Schemas/CourtXML/SimpleTypes/CommunityOfOffenseTextType.xml
file://J00000swebint/MSCApps/Deve/Schemas/CourtXML/SimpleTypes/CommunityOfOffenseTextType.xml
file://J00000swebint/MSCApps/Deve/Schemas/CourtXML/SimpleTypes/CommunityOfOffenseTextType.xml

Integration Services Technical Overview Page 25 of 25

Example with Missing Required Element

Example 3:

- <soap:Fault>

- <soap:Code>

 <soap:Value>soap:Sender</soap:Value>

- <soap:Subcode>

 <soap:Value>soap:InvalidMessage</soap:Value>
</soap:Subcode>
</soap:Code>
- <soap:Reason>
 <soap:Text xml:lang="en">The element 'AddressUSNonStandard' in

namespace 'http://www.courts.state.mn.us/CourtXML/3' has invalid child
element 'AddressCity' in namespace

'http://www.courts.state.mn.us/CourtXML/3'. List of possible elements
expected: 'AddressLine1' in namespace

'http://www.courts.state.mn.us/CourtXML/3'. LineNumber = 75,
LinePosition = 10</soap:Text>

</soap:Reason>
 <soap:Node>soap:Body</soap:Node>

 <soap:Role>http://www.w3.org/2003/05/soap-

envelope/role/ultimateReceiver</soap:Role>
- <soap:Detail>

- <soap:Envelope xsi:schemaLocation="http://www.w3.org/2003/05/soap-

envelope http://www.w3.org/2003/05/soap-envelope">

1. This means that a required child element of AddressUSNonStandard was not
included in the message document, or was not in the expected location in the
document. The parser is encountering an element called AddressCity where it should
have found AddressLine1. In the schema for this message, AddressLine1 is the first
required child element when AddressUSNonStandard is used as the address structure
for the defendant’s address.

2. This is the line number and position within the line, from the body of the submission
message that contains the invalid value. It is somewhat approximate because it could
vary slightly depending upon the tool that is being used to view the XML document. This
line number/position information only takes into account the body of the message – it
does not include any of the SOAP elements or headers.

1

2

